Магниевые сплавы применяются в промышленности намного чаще, чем чистый магний. Данный металл – легкий и ковкий, серебристо-белого цвета. Он обладает очень высокой химической активностью. На воздухе обычно покрыт тонкой и прочной пленкой окисла, которая препятствует дальнейшему окислению. В присутствии кислой среды или просто высокой влажности пленка разрушается, в результате чего металл начинает активно взаимодействовать с окружающей средой.
Важная характеристика металла – взаимодействие с кислородом. При высокой температуре магний окисляется кислородом воздуха, сгорая с выделением большого количества тепла и света. Данное свойство послужило широкому применению магния в фотовспышках на заре развития фотографии. Химическая активность и не самые лучшие механические характеристики существенно ограничивают применение чистого магния в промышленности.
Для повышения механических характеристик и придания химической стойкости применяют различные сплавы с магнием. В качестве основных элементов в композициях наибольшее распространение получили алюминий, цинк и марганец. Данные металлы вводятся в состав в количестве до 10%. Кроме этих основных элементов, сюда также входят добавки редкоземельных металлов.
Варьируя химический состав, процентное содержание основных и дополнительных компонентов, можно получить сплавы магния с различными механическими характеристиками, существенно расширяющими область применения и даже позволяющими вытеснить из некоторых областей традиционные материалы – чугун, сталь, алюминий.
Свойства магниевых сплавов зависят не только от состава легирующих добавок, но и от способа дальнейшей обработки.
Содержание
- Влияние легирующих добавок
- Основные разновидности сплавов магния
- Маркировка и свойства
- Получение и производство
- Обработка отливок
- Применение
- Вам также могут быть интересны статьи:
Влияние легирующих добавок
Металлы в составе композиций улучшают и изменяют физические и химические свойства основного металла. Основной упор делается на повышении механических характеристик. Алюминий улучшает общую структуру, литейные свойства, повышает прочность. Цинк также повышает прочность и способствует уменьшению зерен в отливке. Основная цель введения марганца, кроме увеличения прочности – повышение химической стойкости к воздействию агрессивных сред и снижение вредного влияния примеси железа.
Редкоземельные металлы, несмотря на малое количество, сильно меняют химические и физические свойства, повышая жаропрочность, улучшая пластичность, ковкость за счет уменьшения зерен и изменений в кристаллической решетке.
Добавка циркония уменьшает растворимость водорода в расплаве, которая в чистом составе составляет значительную величину. Связывая водород, цирконий также способствует уменьшению пористости и зернистости отливок.
Введение лития в некоторые составы позволяет получить магниевые сплавы с рекордно малой плотностью – в 2 раза меньшей, чем у алюминия, с сохранением высокой прочности и легкости механической обработки. Данные сплавы наиболее широко используются в аэрокосмической промышленности, где снижение общего веса конструкции увеличивает массу полезной нагрузки.
Некоторые металлы, напротив, нежелательны даже в малых количествах. Так, примеси железа или никеля даже в объеме тысячных долей процента резко снижают коррозионную стойкость сплава. Растворенный водород увеличивает пористость материала, вызывает увеличение зерен, снижая, таким образом, прочность изделия.
Основные разновидности сплавов магния
Магниевые сплавы различаются технологией изготовления. В соответствии с этим, для всех составов с магнием принята следующая классификация:
- литейные сплавы магния, которые отличаются высокими литейными свойствами;
- деформируемые сплавы, легко поддающиеся механической обработке ковкой прессовкой
Химический состав добавок подобран таким образом, чтобы минимизировать последующую обработку литейных сплавов и увеличить способность к обработке у деформируемых.
Внутри каждой из групп материалы разделяются по своим свойствам, способу литья, методам обработки (прессование, ковка, штамповка и прокат).
Каждая из двух перечисленных групп включает в себя составы с различной прочностью, жаростойкостью, химической стойкостью, а также с различной способностью к свариванию.
Маркировка и свойства
Отечественная промышленность маркирует магниевые сплавы на основе двухбуквенной маркировки с дополнительными цифрами:
- литейные — МЛ1 – МЛ20;
- деформируемые — МА1 – МА19;
- жаропрочные магниевые сплавы ВМЛ1 – ВМЛ2.
Литейные сплавы производятся в большинстве на основе системы Mg – Al – Zn, которая представляет собой твердый раствор алюминия и цинка в магнии. Наилучшими литейными свойствами обладают такие виды растворов, как марки МЛ4 – МЛ6. Данные сплавы обладают высокой текучестью, малой усадкой и не склонны к образованию раковин. Такие характеристики позволяют применять указанные марки при точном литье заготовок любых форм и габаритов.
Жаропрочные сплавы, к которым относятся также марки МЛ9 – МЛ14, способны длительное время выдерживать температуру до 350 ˚С и кратковременно до 400 ˚С. В основе состава система Mg – Zn с добавкой циркония. Кроме жаропрочности, данные сплавы хорошо выдерживают статические и усталостные нагрузки.
Дополнительное легирование редкоземельными металлами в некоторых рецептурах способно уменьшить вероятность трещинообразования, что повышает сопротивляемость деформирующим нагрузкам.
Деформированные сплавы производят на основе систем Mg – Al, Mg – Zn, Mg – Mn. Алюминий и цинк способствуют повышению пластичности и позволяют производить с отливками такие действия давлением, как ковка, прессовка, штамповка, а также холодная и горячая прокатка.
Как и литейные, деформируемые дополнительно легируют редкоземельными металлами, однако здесь нашли также и другие материалы. К ним можно отнести кадмий и серебро, которые повышают прочность при одновременном увеличении пластичности.
Марки МА11 — МА12 деформируемых магниевых сплавов относятся к жаростойким материалам, как и аналогичные литейные.
Сплавы МА14 и МА19 характерны тем, что не допускают применение сварки при дальнейшем применении, в отличие от большинства остальных составов.
Получение и производство
Для изготовления сплавов используются материалы высокой чистоты, поскольку, как говорилось выше, даже мельчайшие примеси нежелательных элементов могу существенно ухудшить свойства готового продукта.
Получение сплавов магния облегчается тем, что температура плавления расплава не превосходит 700˚С. Для получения материала с требуемыми свойствами в расплав чистого магния вводят необходимое количество легирующих элементов. Газовый состав атмосферы вокруг расплава должен быть очищен от водорода, поскольку его высокая растворимость в магнии способна привести к дефектам внутренней структуры.
Обработка отливок
Повысить механические свойства отливок на основе магния можно, применяя несколько методик:
- гомогенизация (закалка);
- закалка со старением для стабилизации свойств;
- рекристализационный отжиг для снятия механических напряжений после обработки давлением;
- диффузионный отжиг для выравнивания внутренней структуры и химического состава в зернах металла.
Следует заметить, что у большинства сплавов после термической обработки механическая прочность не повышается.
Применение
Применение магниевых сплавов в промышленности и технике связано с высокими техническими характеристиками в качестве замены стальных и алюминиевых деталей с учетом требуемых механических свойств.
Плотность магниевого сплава ниже, чем у алюминия, соответственно, вес детали получается меньше.
Наиболее широкое использование магниевые сплавы получили в авиации, в основном, благодаря легкости (на 20-30% легче алюминия) и высокой прочности. Магний используется для изготовления деталей шасси – стоек, дисков колес, а также различных конструктивных элементов конструкции. Корпуса приборов и механизмов также выполнены из данного материала.
Легкий магниевый сплав в конструкции летательных аппаратов позволяет увеличить вес полезной нагрузки, не снижая прочностных характеристик. Такие особенности магниевого сплава обуславливают его широкое распространение в ракетной и космической технике.
Немалая доля конструкционных материалов из сплавов магния используется в автомобильной промышленности. В основном это детали двигателя (картер, поддон), трансмиссии и иные конструктивные элементы. Подсчитано, что при общем весе магниевых сплавов 100 кг, замена деталей на стальные, увеличит массу конструкции на 450 кг.
Из магния изготавливают диски колес. И, хотя они имеют значительно более высокую стоимость, чем традиционные, выигрыш от уменьшения неподрессоренной массе ходовой части автомобиля заметно улучшает динамический характеристики, облегчает работу подвески, делая вождение автомобиля комфортнее и безопаснее.
Источник: